Answer:
366.90149 m/s
923.821735 J
324.734 J
Initial Kinetic energy > Final kinetic energy
Explanation:
= Mass of block = 0.072 kg
= Mass of bullet = 4.67 g
= Initial Velocity of block = 0
= Initial Velocity of bullet = 629 m/s
= Final Velocity of block = 17 m/s
= Final Velocity of bullet
In this system the linear momentum is conserved

Final Velocity of bullet is 366.90149 m/s
The initial kinetic energy

The final kinetic energy

Initial Kinetic energy > Final kinetic energy
Based on internet sources, <span>the basic formulas are: v^2/r = (at)^2/r = a ==> at^2 = r ==> t = sqrt(r/a).
</span>
<span>Assuming the missing units are mutually compatible, as in the following example, they don't need to be known. </span>
<span>Acceleration = 1.6 cramwells/s^2 </span>
<span>Radius = 150 cramwells </span>
<span>t = sqrt(150/1.6) = 9.68 s.
I hope this helps.</span>
Answer:
4
Explanation:
We know that intensity I = P/A where P = power and A = area through which the power passes through.
Now, let the initial intensity of the speaker be I₀ and its initial power be P₀. Since the intensity is increased by a factor of 4, the new intensity be I and new power be P.
So, I = P/A and I₀ = P₀/A
Now, if I = 4I₀,
P/A = 4P₀/A
P = 4P₀
Now, energy E = Pt, where t = time. So, P = E/t and P₀ = E₀/t
Substituting P and P₀ into the equation, we have
P = 4P₀
E/t = 4E₀/t
E = 4E₀
Since the energy is four times the initial energy, the energy output increases by a factor of 4.
The law of superposition helps scientists determine the relative age of a layer of sedimentary rock. the law of superposition is <span>a basic </span>law<span> of geochronology, stating that in any undisturbed sequence of rocks deposited in layers, the youngest layer is on top and the oldest on bottom, each layer being younger than the one beneath it and older than the one above it</span> .
hope this helps :)
Your weight #sorryfortheweight