Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:

with this value you can compute the frequency:
a)

b)
the mass of the block is given by the formula:

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

Finally, the amplitude is:

Answer:
These all different sources of energy add to the store of electrical power that is then sent out to different locations via high powered lines. It is the energy from the sun that is harnessed using a range of technologies such as solar heating, solar architecture, photovoltaics, and artificial photosynthesis.
Hope it helps PLS MARK ME AS BRAINLIST I BEG YOU thanks :)
The student's claim did not follow the scientific method of discovery, hence, it is an opinion not a scientific claim.
<h3>What is the scientific method?</h3>
The scientific method is a procedure employed by scientific towards understanding the world around them as well giving explanation for phenomena in the natural world.
The scientific method involves:
- observations
- asking questions
- putting forward a hypothesis
- testing the hypothesis through experiments
- analyzing results of the experiments and drawing conclusions
- establishing a theory.
Since the student in question just put forward an opinion without testing it out using the scientific method, the statement is not a scientific claim.
Learn more about scientific method at: brainly.com/question/17216882
Answer:
C. Pressure gradient equals gas flow over resistance.
Explanation:
As we know that pressure gradient is the driving force for the gas to flow from one point to other point
And we know that the flow rate is directly proportional to the driving force and it inversely depends on the resistance to flow
so we can say
Flow Rate = 
Flow Rate = 
so we can say that correct statements are as below
A. Gas flow equals pressure gradient over resistance.
B. Resistance equals pressure gradient over gas flow.
D. The amount of gas flowing in and out of the alveoli is directly proportional to the difference in pressure or pressure gradient between the external atmosphere and the alveoli.