In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.
First,

where
is density,
is mass, and
is volume. We can compute the volume of the roll:


When the roll is unfurled, the aluminum will be a rectangular box (a very thin one), so its volume will be the product of the given area and its thickness
. Note that we're assuming the given area is not the actual total surface area of the aluminum box, but just the area of the largest face (i.e. the area of one side of the unrolled sheet of aluminum).
So we have

where
is the given area, so


If we're taking significant digits into account, the volume we found would have been
, in turn making the thickness
.
Radiation because it radiates the heat in there body therefore making them hot.
Answer:
a

b

Explanation:
From the question we are told that
The number of identical drippers is n = 60
The diameter of each hole in each dripper is
The diameter of the main pipe is 
The speed at which the water is flowing is 
Generally the amount of water used in one hour = 3600 seconds is mathematically represented as

Here A is the area of the main pipe with value

=> 
=> 
So
=> 
=> 
Generally the area of the drippers is mathematically represented as

=> 
=> 
Generally from continuity equation we have that

=> 
=> 
''The freezer and room are not an isolated system, since electrical energy flows in.'' is the correct statement.
<h3>
What is Second Law of Thermodynamics?</h3>
The Second Law of Thermodynamics says that "in all energy exchanges, if no energy enters or leaves the system, the potential energy of the state will always be less than the energy of the initial state."
So we can conclude that ''The freezer and room are not an isolated system, since electrical energy flows in.'' is the correct statement.
Learn more about law here: brainly.com/question/820417
#SPJ1