Answer:
Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis. The most common mode is capillary zone electrophoresis (CZE), in which charged analytes migrate in a buffer under the influence of an electric field.
Explanation:
Answer is: (2) Chemical energy is converted to electrical energy.
An electrochemical cell (voltaic or galvanic cell) is generating electrical energy from chemical reactions.
In galvanic cell, specie (for example zinc and zinc cations) from one half-cell, lose electrons (oxidation) and species from the other half-cell (for example copper and copper cations) gain electrons (reduction).
Oxidation on the zinc anode: Zn(s) → Zn²⁺(aq) + 2e⁻.
Reduction on the copper cathode: Cu²⁺(aq) + 2e⁻ → Cu(s).
Bromine has 35 protons, and in this case 46 neutrons, so 35 + 46 = 81
Therefore, the symbol is (subscript 35)(superscript 81) Br.
<h3>
Answer:</h3>
382.63 K
<h3>
Explanation:</h3>
We are given;
- Volume of Iodine as 71.4 mL
- Mass of Iodine as 0.276 g
- Pressure of Iodine as 0.478 atm
We are required to calculate the temperature of Iodine
- We are going to use the ideal gas equation;
- According to the ideal gas equation; PV = nRT, where R is the ideal gas constant, 0.082057 L.atm/mol.K.
T = PV ÷ nR
But, n, the number of moles = Mass ÷ Molar mass
Molar mass of iodine = 253.8089 g/mol
Thus, n = 0.276 g ÷ 253.8089 g/mol
= 0.001087 moles
Therefore;
T = (0.478 atm × 0.0714 L) ÷ (0.001087 moles × 0.082057)
= 382.63 K
Thus, the temperature of Iodine in Kelvin is 382.63 K