Through manipulation of equations, we are able to obtain the equation:
![-pOH= log [ OH^{-}]](https://tex.z-dn.net/?f=-pOH%3D%20log%20%5B%20OH%5E%7B-%7D%5D%20)
Then we can transform the equation into:
![[ OH^{-}]= 10^{-pOH}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%3D%2010%5E%7B-pOH%7D%20%20)
Then we are able to plug in the pOH and directly get [OH-]:
![[ OH^{-}] = 10^{-6.48}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%20%3D%2010%5E%7B-6.48%7D%20)
Answer:
The boiling point of milk is close to the boiling point of water, which is 100 degrees C, or 212 degrees F at sea level, but milk contains additional molecules, so its boiling point is slightly higher.
Explanation:
Answer:
2.74 M
Explanation:
Given data:
Mass of sodium chloride = 80.0 g
Volume of water = 500.0 mL
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Now we will convert the mL into L.
500.0 mL× 1 L /1000 mL = 0.5 L
In next step we will calculate the number of moles of sodium chloride.
Number of moles = mass/molar mass
Number of moles = 80.0 g/ 58.4 g/mol
Number of moles = 1.37 mol
Molarity:
M = 1.37 mol/ 0.5 L
M = 2.74 M