Answer:
squares in Step n. f (n) = 8 + 3(n – 1} for n > 1 /(1) = 8, /{n2) = 3+f (n – 1) for n > 2 01)= 8, 7 (n) = 8= ƒ(n=1) forn> 2 Df1)= 3 -8 (n- 1) forn > 1 Of (n) - 37 + 5 for n > 1 32+5 for n>1 CS (n) 3+ an forn 1
Step-by-step explanation:
Answer:
H0 : μ1 - μ2 = 0
H1 : μ1 - μ2 ≠ 0
-1. 34
0.1837
Step-by-step explanation:
Full time :
n1 = 125
x1 = 2.7386
s1 = 0.65342
Part time :
n2 = 88
x2 = 2.8439
s2 = 0.49241
H0 : μ1 - μ2 = 0
H1 : μ1 - μ2 ≠ 0
Test statistic :
The test statistic :
(x1 - x2) / sqrt[(s1²/n1 + s2²/n2)]
(2.7386 - 2.8439) / sqrt[(0.65342²/125 + 0.49241²/88)]
−0.1053 / sqrt(0.0034156615712 + 0.0027553)
-0.1053 /0.0785554
= - 1.34
Test statistic = - 1.34
The Pvalue :
Using df = smaller n - 1 = 88 - 1 = 87
Pvalue from test statistic score ;
Pvalue = 0.1837
Pvalue > α ; We fail to reject the null and conclude that the GPA does not differ.
At α = 0.01 ; the result is insignificant
Answer:
E D C are the answers for the questions
Answer:
2 is the answer
Step-by-step explanation:
hope it helps