They would most likely speed up.
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
Answer:
The change in temperature of a coffee cup calorimeter is 8.87°C.
Explanation:
Volume of the water = V = 150 g
Density of the water , d =1.0 g/mL
Mass of the water = M

Mass of solution = m = M = 150.0 g

Moles of NaOH = 
Energy released when 0.125 moles of NaOH added in water = Q

1 kJ = 1000 J
Heat gained by water = Q' = -Q ( conservation of energy)

Specific heat of solution = c = 4.184 J/g°C
Change in temperature of the solution = 



The change in temperature of a coffee cup calorimeter is 8.87°C.
The answer is B....Brainliest?....