The electron is a subatomic particle that has a negative charge and a negligible mass. The electron travels around out side the nucleus.
The subatomic particles that are inside the nucleus are protons and neutrons.
The answer to your question is electron.
Answer:
The Answer is 'D'
Explanation:
The diagram on the down side shows the behavior of the particles of a liquid so I suppose it is the ocean. While the top diagram shows the behavior of the particles of a gas so I am sure it's the air. Therefore I chose the last diagram because it describes exactly how you wanted in the question, which is the Ocean's water evaporating to become gas or the 'air' as we say
<em>Thank</em><em> </em><em>you</em><em> </em><em>and</em><em> </em><em>I</em><em> </em><em>hope</em><em> </em><em>you</em><em> </em><em>like this</em><em> </em><em>answer</em><em>! </em>
Answer:
d) V = 91.3 L
Explanation:
Given data:
Volume of nitrogen = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Number of atoms of nitrogen = 2.454×10²⁴ atoms
Solution:
First of all we will calculate the number of moles of nitrogen by using Avogadro number.
1 mole = 6.022×10²³ atoms
2.454×10²⁴ atoms × 1 mol / 6.022×10²³ atoms
0.407×10¹ mol
4.07 mol
Volume of nitrogen:
PV = nRT
1 atm × V = 4.07 mol ×0.0821 atm.L /mol.K ×273.15 K
V = 91.3 atm.L /1 atm
V = 91.3 L
The bigger the atomic radius the easier it is to oxidise the atom. Remember that an atom is oxidized by the loss of an electron.
Explanation:
The bigger the atomic radius the further away the valence electron are from the attractive force of the atomic nucleus. This means that the energy required to remove an electron from the valence shell is easier compared to an atom with a smaller atomic radius. This is because you need to overcome the attractive force of the nucleus on the electron for you to oxidize the atom.
Learn More:
For more on oxidation energy check out;
brainly.com/question/8835627
brainly.com/question/13507502
#LearnWithBrainly
Answer:
Red
Explanation:
Violet - shortest wavelength, around 400-420 nanometers with highest frequency. They carry the most energy.
Indigo - 420 - 440 nm
Blue - 440 - 490 nm
Green - 490 - 570 nm
Yellow - 570 - 585 nm
Orange - 585 - 620 nm
Red - longest wavelength, at around 620 - 780 nanometers with lowest frequency and least amount of energy
Therefore, <em>red </em>is the answer you're looking for.
I hope this helps and that you have a great day! :)