Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N
The wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
Answer:
The force is 
Explanation:
From the question we are told that
The first diameter is 
The second diameter is 
Generally the first area is

=> 
=> 
The second area is



For a hydraulic press the pressure at both end must be equal .
Generally pressure is mathematically represented as

=>

=> 
=> 
First you need to draw the picture of the problem to better understand it. Like the one bellow.
In this task you have 2 sides of triangle and we can calculate angle between them. Angle between them is 120 - 35 = 85 degrees.
Once you have those 3 variables you can calculate third side of triangle using cosine law.
a - second displacement
b - first displacement
c- resultant displacement.

now we just need to calculate this.

a = 196
now, we use cosine law again to find the angle between second and first displacement.

degrees
The angle marked with "?" in the graph is our direction angle. We will call it


Second displacement has magnitude of 196 and a direction of -14.64 with positive x axis