Work = (force) x (distance)
80 J = (force) x (4 m)
Force = (80 J) / (4 m) = 20 N
That's IF the force was in the same direction as the 4m of motion.
If the force was kind of slanted, then it had to be stronger, and
it had a component of 20N in the direction of the motion.
Answer:
The amount of current that must flow through the wire for it to be suspended against gravity by magnetic force = 6.125 A
Explanation:
Force on a wire carrying current in an electric field is given by
F = (B)(I)(L) sin θ
For this question,
The magnetic force must match the weight of the wire.
F = mg
mg = (B)(I)(L) sin θ
(m/L)g = (B)(I) sin θ
Mass per unit length = 75 g/m = 0.075 kg/m
B = magnetic field = 0.12 T
I = ?
g = acceleration due to gravity = 9.8 m/s
θ = angle between wire's current direction and magnetic field = 90°
0.075 × 9.8 = 0.12 × I sin 90°
I = 0.075 × 9.8/0.12 = 6.125 A
Answer:
DOUBLE CHECK BECUASE IM ONLY 68.030303039999999% SURE!!!
(ANSWER IS HERE) ( D) It lacked practical examples in supporting theory
Know it's not B becuase there was no scientific community back then.
Know it's not C becuase it actully had lots of evidence.
But I'm not sure about A
Answer:
25 cm²
Explanation:
Meters and centimeters are both the units for measuring length. The SI unit of measuring length is meters.
Area is the quantity which measures the cross-section occupied by the object.
Thus,
Given that = Area = 0.0025 m²
To convert into cm²
1 m = 100 cm
So, 1 m² = 10000 cm²
So,
<u>Area = 0.0025 × 10000 cm² = 25 cm²</u>