To determine the distance of the light that has traveled given the time it takes to travel that distance, we need a relation that would relate time with distance. In any case, it would be the speed of the motion or specifically the speed of light that is travelling which is given as 3x10^8 meters per second. So, we simply multiply the time to the speed. Before doing so, we need to remember that the units should be homogeneous. We do as follows:
distance = 3x10^8 m/s ( 8.3 min ) ( 60 s / 1 min ) = 1.494x10^11 m
Since we are asked for the distance to be in kilometers, we convert
distance = 1.494x10^11 m ( 1 km / 1000 m) = 149400000 km
The fundamental frequency of the tube is 0.240 m long, by taking air temperature to be
C is 367.42 Hz.
A standing wave is basically a superposition of two waves propagating opposite to each other having equal amplitude. This is the propagation in a tube.
The fundamental frequency in the tube is given by

where, 
Since, T=37+273 K = 310 K
v = 331 m/s

Using this, we get:

Hence, the fundamental frequency is 367.42 Hz.
To learn more about Attention here:
brainly.com/question/14673613
#SPJ4
Answer:
it loaded and it is C. buddy sorry about that :)
Answer:
Because winding roads have a gentle slope on hills, so it's easy to climb it than a steepy.
A I think it was sorry if not