Given:
V1 = 4m3
T1 = 290k
P1 = 475 kpa = 475000 Pa
V2 = 6.5m3
T2 = 277K
Required:
P
Solution:
n = PV/RT
n = (475000 Pa)(4m3) / (8.314 Pa-m3/mol-K)(290k)
n = 788 moles
P = nRT/V
P = (788 moles)(8.314
Pa-m3/mol-K)(277K)/(6.5m3)
P = 279,204 Pa or 279 kPa
As the boy kicks the football with an angle, due to the effect of the gravitational force, the ball would follow a projectile path which is parabolic in nature. From this idea, we can derive equations pertaining to the maximum height that the ball would reach. At the maximum height of the ball, the velocity of the ball would be equal to zero. From the equations for projectile motion, we would obtain the equation as follows:
Maximum height = v0^2 sin^2 (theta) / 2g
Maximum height = (28.0 m / s )^2 sin^2 (30.0) / 2(9.8 m / s^2)
Maximum height = 10 m
The maximum height that the ball would reach would be 10 m.
89 degrees Fahrenheit would be 31.7 degrees Celsius!
Answer:
(5) It depends on whether the collision was elastic or inelastic.
Explanation:
Due to the absence of external forces and the fact that masses and initial velocities are known, it is needed to determine if collision is elastic or inelastic. If collision is inelastic, the Momentum Principle is sufficient to calculate final momentum, but if it is elastic, the Momentum Principle should be complemented with the application of the Energy Principle.
Hence, the correct answer is (5).
Answer:
497.143 nm.
Explanation:
Diffraction grating experiment is actually done by passing light through diffraction glasses, the passage of the light causes some patterns which can be seen on the screen. This is because light is a wave and it can spread.
The solution to the question is through the use of the formula in the equation (1) below;
Sin θ = m × λ. ---------------------------------(1).
Where m takes values from 0, 1, 2, ...(that is the diffraction grating principal maxima).
Also, m × λ = dc/ B -------------------------------------------(2).
We are to find the second wavelength, therefore;
λ2 =( m1/c1) × (c2/m2) × λ1 ------------------------(3).
Where c1 and c2 are the order maximum and m = order numbers. Hence;
λ2 = (1/ .350) × (.870/3) × 600 = 497.143 nm.