From the choices provided, the better answer is ' T ' .
Answer:
Angle of incline is 20.2978°
Explanation:
Given that;
Gravitational acceleration on a planet a = 3.4 m/s²
Gravitational acceleration on Earth g = 9.8 m/s²
Angle of incline = ∅
Mass of the stone = m
Force on the stone along the incline will be;
F = mgSin∅
F = ma
The stone has the same acceleration as that of the gravitational acceleration on the planet.
so
ma = mgSin∅
a = gSin∅
Sin∅ = a / g
we substitute
Sin∅ = (3.4 m/s²) / (9.8 m/s²)
Sin∅ = 0.3469
∅ = Sin⁻¹( 0.3469 )
∅ = 20.2978°
Therefore, Angle of incline is 20.2978°
Answer:
√(6ax)
Explanation:
Hi!
The question states that during a time t the motorcyle underwent a displacement x at constant acceleration a starting from rest, mathematically we can express it as:
x=(1/2)at^2
Then the we need to find the time t' for which the displacement is 3x
3x=(1/2)a(t')^2
Solving for t':
t'=√(6x/a)
Now, the velocity of the motorcycle as a function of time is:
v(t)=a*t
Evaluating at t=t'
v(t')=a*√(6x/a)=√(6*x*a)
Which is the final velocity
Have a nice day!
Answer:
The tangential speed of the ball is 11.213 m/s
Explanation:
The radius is equal:
(ball rotates in a circle)
If the system is in equilibrium, the tension is:

Replacing:

Replacing:

Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s