By the quadratic formula, the <em>solution</em> set of the <em>quadratic</em> equation is formed by two <em>real</em> roots: x₁ = 0 and x₂ = - 12.
<h3>How to find the solution of quadratic equation</h3>
Herein we have a <em>quadratic</em> equation of the form a · m² + b · m + c = 0, whose solution set can be determined by the <em>quadratic</em> formula:
x = - [b / (2 · a)] ± [1 / (2 · a)] · √(b² - 4 · a · c) (1)
If we know that a = - 1, b = 12 and c = 0, then the solution set of the quadratic equation is:
x = - [12 / [2 · (- 1)]] ± [1 / [2 · (- 1)]] · √[12² - 4 · (- 1) · 0]
x = - 6 ± (1 / 2) · 12
x = - 6 ± 6
Then, by the quadratic formula, the <em>solution</em> set of the <em>quadratic</em> equation is formed by two <em>real</em> roots: x₁ = 0 and x₂ = - 12.
To learn more on quadratic equations: brainly.com/question/1863222
#SPJ1
- 5z^3 - z^4 + 4z^5 is the answer.
X = 4 because 1 over 24 times 4 is 4 over 24 which is converted to 1 over 6
12 divided by 0.3 equals 40
<span>If two parallel planes are cut by a third plane, then the lines of intersection are parallel and cannot intersect one another.</span>