The group paid $ 5250 at first city and $ 6250 at second city
<u>Solution:</u>
Let x = the charge in 1st city before taxes
Let y = the charge in 2nd city before taxes
The hotel charge before tax in the second city was $1000 higher than in the first
Then the charge at the second hotel before tax will be x + 1000
y = x + 1000 ----- eqn 1
The tax in the first city was 8.5% and the tax in the second city was 5.5%
The total hotel tax paid for the two cities was $790
<em><u>Therefore, a equation is framed as:</u></em>
8.5 % of x + 5.5 % of y = 790

0.085x + 0.055y = 790 ------- eqn 2
<em><u>Let us solve eqn 1 and eqn 2</u></em>
<em><u>Substitute eqn 1 in eqn 2</u></em>
0.085x + 0.055(x + 1000) = 790
0.085x + 0.055x + 55 = 790
0.14x = 790 - 55
0.14x = 735
<h3>x = 5250</h3>
<em><u>Substitute x = 5250 in eqn 1</u></em>
y = 5250 + 1000
<h3>y = 6250</h3>
Thus the group paid $ 5250 at first city and $ 6250 at second city
Answer: any number that’s not already used
Step-by-step explanation: It could be any number as long as it hasn’t already been used in that data set. Mode is the most occurring value, and there’s no mode when all numbers are different. Hope this helped;)
Answer:
1 and 2
Step-by-step explanation:
Answer:
The correct answer is the first one of your list of options:
"<em>Locate the ordered pair (0, –6). From that point on the graph, move up 2, right 1 to locate the next ordered pair on the line. Draw a line through the two points</em>."
Step-by-step explanation:
Since the y-intercept is -6, then the point (0, -6) is a point on the line.That is x = 0 and y = -6. From there you move according to the slope value "2 = 2/1" which means two units of rise when the run is one.
Then, from (0, -6) move up 2 units and then right one unit. The new point should also be a point on the line. Join the two points with a line to graph the function.