Answer:
1.62 atm
Explanation:
We can solve the problem by using the ideal gas equation:

where:
p = ? is the pressure of the gas in the tire
V = 8.5 L is the volume of the tire
n = 0.55 mol is the number of moles of the gas
R = 0.0821 atm L / K mol is the gas constant
T = 305 K is the temperature of the gas
By re-arranging the equation and substituting the numbers in, we find:

Newton's law of universal gravitation<span> states that a particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. hope this helps =)</span>
Answer:
The speed of the object just before it hits Earth is 
(A) is correct option.
Explanation:
Given that,
M = mass of earth
R = radius of earth
The potential energy at height above the surface of the earth

The kinetic energy at height above the surface of the earth

The total energy at height above the surface of the earth

....(I)
The total energy at the surface of the earth
....(II)
We need to calculate the speed of the object just before it hits Earth
From equation (I) and (II)

Here, h = R


Hence, The speed of the object just before it hits Earth is
.
Answer:
distance between crust and trough = 1m
amplitude = 1/2 = 0.5
Answer: 
Explanation:
Given the mass of skier m=72 kg
distance traveled d=75 m
constant speed v=3.4 m/s
If speed is constant then there must no force acting in the direction of motion
i.e. tension force must be equal to the component of weight

Work done is given by