Answer:
<em>-z axis</em>
Explanation:
According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.
Explanation:
F = ma, and a = Δv / Δt.
F = m Δv / Δt
Given: m = 60 kg and Δv = -30 m/s.
a) Δt = 5.0 s
F = (60 kg) (-30 m/s) / (5.0 s)
F = -360 N
b) Δt = 0.50 s
F = (60 kg) (-30 m/s) / (0.50 s)
F = -3600 N
c) Δt = 0.05 s
F = (60 kg) (-30 m/s) / (0.05 s)
F = -36000 N
The north vectors add up as so the south vectors. Then subtract the two. For north its 4 + 5 = 9. South is 2 + 5 = 7. Then 9-7 = 2km North (D)
What happens to end a of the rod when the ball approaches it closely this first time is; It is strongly attracted.
<h3>Electrostatics</h3>
I have attached the image of the rod.
We are told that the ball is much closer to the end of the rod than the length of the rod. Thus, if we point down the rod several times, the distance of approach will experience no electric field and as such the charge on end point A of the rod must be comparable in magnitude to the charge on the ball.
This means that their fields will cancel.
Finally, we can conclude that when a charge is brought close to a conductor, the opposite charges will all navigate to the point that is closest to the charge and as a result, a strong attraction will be created.
This also applies to a strong conducting rod and therefore it is strongly attracted.
Read more about Electrostatics at; brainly.com/question/18108470
<span>C) Humans and their activities do not affect the natural cycles of the Earth
you can think that </span>Humans and their activities do not affect the natural cycles of the Earth.