The climber move 0.19 m/s faster than surfer on the nearby beach.
Since both the person are on the earth, and moves with the constant angular velocity of earth, however there linear velocity is different.
Number of seconds in a day, t=24*60*60=86400 sec
The linear speed on the beach is calculated as
V1=
Here, t is the time
Plugging the values in the above equation
V1=
=465.421 m/s
Velocity on the mountain is calculated as
V2=
Plugging the values in the above equation
V2=
=465.61 m/s
Therefore person on the mountain moves faster than the person on the beach by 465.61-465.421=0.19 m/s
Answer:
somatosensory
Explanation:
The primary somatosensory cortex specializes in receiving signals from different parts of the body.
The magnetic field of a bar magnet is strongest at either pole of the magnet. It is equally strong at the north pole when compared with the south pole. The force is weaker in the middle of the magnet and halfway between the pole and the center.
Answer:
4.24nm
0.385eV
Explanation:
Maximum wavelength (λmax) :
λmax = ( hc) /Φ
h = plancks constant = 6.63 * 10^-34
c = speed of light = 3*10^8
1ev = 1.6 * 10^-19
Φ = 2.93eV = 2.93* (1.6*10^-19) = 4.688*10^-19
λmax = [(6.63 * 10^-34) * (3 * 10^8)] / 4.688*10^-19
λmax = 19.89 * 10^-26 / 4.688*10^-19
λmax = 4.242 * 10^-7 m
λmax= 4.24nm
B.)
E = hc / eλ eV
λ = 3.75nm = 3.75 * 10^-7m = 375 *10^-9
E = (6.63 * 10^-34) * (3 * 10^8) / (1.6 * 10^-19) * (375 * 10^-9)
E = 19.89 * 10^-26 / 600 * 10^-28
E = 0.03315 * 10^-26 + 28
E = 0.03315 * 10^2
E = 3.315 eV
Stopping potential : (3.315 eV - 2.93eV) = 0.385eV
kinetic <span>energy when the pitcher has thrown it or when one of the other players has thrown the ball. The baseball also has </span>kinetic<span> energy when the batter hits the ball. when you catch the ball it is potential energy.</span>