Answer:
<h3>The answer is 15000 N</h3>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 1500 × 10
We have the final answer as
<h3>15,000 N</h3>
Hope this helps you
The three properties of electromagnetic waves are; they travel at the speed of light, they include ultraviolet waves, and they can transfer energy through empty space.
<h2>Further Explanation</h2><h3>A wave</h3>
- A wave is a transmission of a disturbance. It involves transmission of energy from one point which is the source to another point.
- Waves may be classified depending on the need for a transmission medium or based on the vibration of particles relative to the direction of wave motion.
- Waves may be either transverse or longitudinal based on the direction of wave motion relative to the vibration of particles
- Additionally waves may be classified as either electromagnetic wave or mechanical based on the need for a transmission medium.
<h3>Electromagnetic waves </h3>
- Electromagnetic waves are types of waves that do not require a material medium for transmission.
- All waves of the electromagnetic spectrum are electromagnetic transverse waves that do not require a material medium for transmission.
- They include; radio waves, microwaves, infrared, visible light, ultra-violet, x-rays, and gamma rays.
- All waves of the electromagnetic spectrum travel with a speed of light, 3.0 x10^8 m/s.
- Additionally, electromagnetic waves possess energy that is given by; E = hf; where h is the plank's constant and f is the frequency.
keywords: Wave, electromagnetic wave, electromagnetic spectrum
<h2>Learn more about: </h2>
Level: High school
Subject: Physics
Topic: Electromagnetic spectrum
Sub-topic: Properties of an electromagnetic waves
The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
Answer:

Explanation:



Electron information needed to solve the question:






![E=\frac{9.11x10{-31}kg*3.0x10^{12}m/s^2}{-1.6x10{-19}C}-[(19.0x10^3mj+18.0x10^3m)xi(400x10^{-6}T)]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B9.11x10%7B-31%7Dkg%2A3.0x10%5E%7B12%7Dm%2Fs%5E2%7D%7B-1.6x10%7B-19%7DC%7D-%5B%2819.0x10%5E3mj%2B18.0x10%5E3m%29xi%28400x10%5E%7B-6%7DT%29%5D)
![E=-i17.08N/C-[7.6(-k)+7.2(j)]N/C](https://tex.z-dn.net/?f=E%3D-i17.08N%2FC-%5B7.6%28-k%29%2B7.2%28j%29%5DN%2FC)

The answer is the third graph