Answer:
65.2L
Explanation:
Using the general gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (Kelvin)
According to the information provided in this question,
P = 1.631 atm
V = ?
n = 4.3 moles
T = 28°C = 28 + 273 = 301K
Using PV = nRT
V = nRT/P
V = 4.3 × 0.0821 × 301 ÷ 1.631
V = 106.26 ÷ 1.631
V = 65.15
Volume of the gas = 65.2L
I say the answer is The ratio of oxygen atoms to hydrogen atoms in a molecule of sugar is 2 to 1
The Mesosphere, like the troposphere layer, has a decrease in temperature with altitude because of the decreases in the density of the air molecules. Thermosphere: As the altitude increases, the air temperature increases.
The solubility KI is 50 g in 100 g of H₂O at 20 °C. if 110 grams of ki are added to 200 grams of H₂O <u>the </u><u>solution </u><u>will be </u><u>saturated</u><u>.</u>
<h3>What is solubility?</h3>
Solubility is a condition where the solute is fully dissolved in the solvent. When fully mixed with the solvent.
Given that 50 g of KI is added to 100 g of water at 20 °C it means 100 g of water can dissolve a maximum of 50 g of KCl.
1 g of water will dissolve an quantity of 0.5 g of KCl.
To assay for 200 g of water: 200 g of water can disintegrate a maximum of (0.5) x 200 g of KCl.
The maximum amount of KCl that will dissolve is 100 g
Actualised amount dissolved = 110 g
when Amount dissolved > Maximum solubility limit
110 g > 100 g
Thus, the solution is saturated.
To learn more about solubility, refer to the below link:
brainly.com/question/8591226
#SPJ4
Answer:
Here you go! 50% of your writing piece
Explanation:
Foods produced from or using GM organisms are often referred to as GM foods.
GM foods are developed and marketed because there is some advantage either to the producer or consumer of these GM foods. GM seed developers wanted their products to be accepted by producers and have concentrated on innovations that bring direct benefit to farmers and generally the food industry.
One objective for developing plants based on GM organisms is to improve crop protection. The GM crops currently on the market are mainly aimed at an increased level of crop protection through the introduction of resistance against plant diseases caused by insects or viruses or through increased tolerance towards herbicides.
Resistance against insects is achieved by incorporating into the food plant the gene for toxin production from the bacterium Bacillus thuringiensis. GM crops that inherently produce this toxin have been shown to require lower quantities of insecticides in specific situations, where pest pressure is high.