Answer:
Reorder the steps so that step 4 appears before step 3
Explanation:
In a nuclear power plant, we have;
1) Nuclear reaction between the radio active species and the particles takes place to generate energy in the nucleus of atoms
2) The nuclear energy in the atom is converted into radiant energy, which is the energy found in light, and thermal (heat) energy
3) The produced radiant and thermal energy is released as heat and light
4) With the produced heat, steam is generated
5) The generated steam turns the steam turbines and produced mechanical energy
6) The produced mechanical energy is then converted into electrical energy in the electrical generator of the power plant
To correct Savion's error, Step 4) the light and heat should be released before step 3) the released heat can be used to generate steam, we therefore reorder the steps so that step 4 appears before step 3.
The correct answer is: Angular velocity =

rad/s
Explanation:
The angular velocity is given as:
ω =

--- (1)
Where T = 165 * (365 days) * (24 hours/day) * (60 minutes/hour) * (60 seconds/minute) = 5203440000 s
Plug in the value in (1):
ω =

rad/s
Answer:
T=1022.42 N
Explanation:
Given that
l = 32 cm ,μ = 1.5 g/cm
L =2 m ,V= 344 m/s
The pipe is closed so n= 3 ,for first over tone


f= 129 Hz
The tension in the string given as
T = f²(4l²) μ
Now by putting the values
T = f²(4l²) μ
T = 129² x (4 x 0.32²) x 1.5 x 10⁻³ x 100
T=1022.42 N
Answer:
w = 706.32 [N]
Explanation:
The force due to gravitational acceleration can be calculated by means of the product of mass by gravitational acceleration.
w = m*g
where:
w = weight [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
Then we have:
![w = 72*9.81\\w = 706.32 [N]](https://tex.z-dn.net/?f=w%20%3D%2072%2A9.81%5C%5Cw%20%3D%20706.32%20%5BN%5D)
Answer: 3.7×10¹²watts
Explanation:
Radiation is one of the mode of heat transfer and modes differs from each other based on their medium of heat transfer. Radiation is a process of transferring heat energy from one point to another without heating the intervening medium (no material medium is required).
According to Stefan's law of radiation, the rate of emission of radiant energy is directly proportional to the fourth power of its absolute temperature.
Mathematically, R = eAT⁴
e is constant of proportionality called emissivity. Emissivity varies depending on the type of body being considered.
For the question, we are considering black body and emissivity of black body is 1 being a perfect body.
A is the area of the body
T is the absolute temperature
e = 1
A = 0.5cm²
T = 1650°C
Rate of radiation = 1×0.5×1650⁴
= 3.7×10¹²watts.
The hole will therefore radiate 3.7×10¹²watts