Answer:
-1.5m/s²
Explanation:
Acceleration can be thought of as [Change in Velocity]/[Change in time]. To find these changes, you simply subtract the initial quantity from the final quantity.
So for this question you have:
- V_i = 110m/s
- V_f = 80m/s
- t_i = 0s
- t_f = 20s
which means that the acceleration = (80-110)/(20-0)[m/s²] = (-30/20)m/s² = -1.5m/s²
Answer:
A) 26V
Explanation:
(a) the potential difference between the plates
Initial capacitance can be calculated using below expresion
C1= A ε0/ d1
Where d1= distance between = 2.70 mm= 2.70× 10^-3 m
ε0= permittivity of space= 8.85× 10^-12 Fm^-1
A= area of the plate = 7.90 cm2 = 7.90 ×10^-4 m^2
If we substitute the values we
C1= A ε0/ d1
=( 7.90 ×10^-4 × 8.85× 10^-12 )/2.70× 10^-3
C1=2.589 ×10^-12 F= 2.59 pF
Initial charge can be determined using below expresion
q1= C1 × V1
V1=2.589 ×10^-12 F
V1= voltage=7.90 V
If we substitute we have
q1= 2.589 ×10^-12 × 7.90
q1= 20.45×10^-12C
20.45 pC
Final capacitance can be calculated as
C2= A ε0/ d2
d2=8.80 mm= /8.80× 10^-3
7.90 ×10^-4 × 8.85× 10^-12 )/8.80× 10^-3
C1=0.794 ×10^-12 F= 0.794 pF
Final charge= initial charge
q2=q1 (since the battery is disconnected)
q2=q1= 20.45 pC
Final potential difference
V2= q/C2
= 20.45/0.794
= 26V
Earth is divided into two hemispheres/coast. Which is south, north, east, and west.
California is west coast.
The feather's vertical position
is determined by

We take the feather's starting position to be the origin, and the downward direction to be positive. Then

so the answer is D.
Answer:
619.8 N
Explanation:
The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

where
T is the tension
m is the mass of the rock
v is the speed
r is the radius of the circular path
At the beginning,
T = 50.4 N
v = 21.1 m/s
r = 2.51 m
So we can use the equation to find the mass of the rock:

Later, the radius of the string is decreased to
r' = 1.22 m
While the speed is increased to
v' = 51.6 m/s
Substituting these new data into the equation, we find the tension at which the string breaks:
