Answer:
Impulse = 322.5[kg*m/s], the answer is D
Explanation:
This method it is based on the principle of momentum and the amount of movement; and used to solve problems involving strength, mass, speed and time.
If units of the SI are used, the magnitude of the impulse of a force is expressed in N * s. however, when remembering the definition of the newton.

Now replacing the values on the following equation that express the definition of impulse
![Impulse = Force * Time\\\\Impulse = 215 * 1.5 = 322.5 [kg*m/s]](https://tex.z-dn.net/?f=Impulse%20%3D%20Force%20%2A%20Time%5C%5C%5C%5CImpulse%20%3D%20215%20%2A%201.5%20%3D%20322.5%20%5Bkg%2Am%2Fs%5D)
Answer:infrared radiation
Explanation:
Most remote control uses infrared radiation
Answer: A proton is a positively charged particle located in the nucleus of an atom.
Answer:
Water gains energy during evaporation and releases it during condensation in the atmosphere
Explanation:
In the water cycle, heat energy is gained or lost by water as it undergoes various processes in the cycle.
In evaporation, water molecules gains energy because the molecules of water vibrate faster and become more energetic. Hence they are able to escape into the atmosphere from the surface of the liquid.
In condensation, the molecules of gaseous water looses energy and becomes liquid.
Hence, water gains energy during evaporation and releases it during condensation in the atmosphere.
Complete Question:
Given
at a point. What is the force per unit area at this point acting normal to the surface with
? Are there any shear stresses acting on this surface?
Answer:
Force per unit area, 
There are shear stresses acting on the surface since 
Explanation:
![\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D)
equation of the normal,
![\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cb%20n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Traction vector on n, 
![T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
![T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B27%7D%7B%5Csqrt%7B33%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.


If the shear stress,
, is calculated and it is not equal to zero, this means there are shear stresses.

![\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%2028%28%20%281%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%281%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%29%5C%5C%5C%5C%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%20%5B%20%2828%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%2828%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%5D%5C%5C%5C%5C%5Ctau%20%3D%20%20%5Cfrac%7B-5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z)

Since
, there are shear stresses acting on the surface.