Okay so just add all of them up the fine the x and the y and d the times that by the size of yiurn four head
Answer:
Cells are considered the fundamental units of life. The cells in complex multicellular organisms like people are organized into tissues, groups of similar cells that work together on a specific task. ... At each level of organization—cells, tissues, organs, and organ systems—structure is closely related to function.
Hope this is helpful :)
E. co and n2Effusion is the process where gas escapes through a hole. Gases with a lower molecular mass effuse more speedy than gases with a higher molecular mass. R<span>elative rates of effusion is related to the molecular mass.
a) M(N</span>₂)/M(O₂) = 28/32 = 0,875
b) M(N₂O)/M(NO₂) = 44/46 = 0,956
c) M(CO)/M(CO₂) = 28/44 = 0,636
d) M(NO₂)/M(N₂O₂) = 44/58= 0,758
e) M(CO)/M(N₂) = 28/28 = 1, <span>CO and N</span>₂ <span>have iexact molecular masses and will effuse at nearly identical rates.</span>
Answer:
E) Intramolecular bond angles change
Explanation:
Infrared Radiation:
IR is electromagnetic radiations. The wavelength i.e. 700nm to 1000 mm of infrared is longer than invisible light and Its frequency is lower than light, that's why it is invisible to light.
- When IR radiation strike the molecule it absorbed by this molecule.
- This radiation used to identify and study chemicals.
- Infrared radiation interact with intra-bonds of the molecule.
- Bonds in the molecules have vibrational translational and rotational movements
- Due to these vibration, rotation and translation movement it absorb a radiation of specific frequency and wavelength
- These movements of bond are very small and absorbs radiations of very low frequency
- So when Infrared light or radiation absorbed the intra-bonds of the molecule get affected and angles of these bonds changes.
- As the frequency of the absorbed radiation matches the frequency of the bond that vibrates.
So
The correct option is option E
E) Intramolecular bond angles change
* Note:
it couldn't be option A as the frequency of IR is not enough to rotate a whole molecule
It Couldn't be option B as IR rations are electromagnetic radiation of longer wave length so it one can not see it with light so how it will glow a molecule
It also not could be the option C as for the excitation of electrons require much higher energy.
It also not the option D as nuclear magnetic spin is associated with nuclear magnetic radiation that are much different from IR.
Answer:
5
Explanation:
they are all significant All non-zero numbers ARE significant