the balanced equation for the formation of ammonia is
N₂ + 3H₂ ---> 2NH₃
molar ratio of N₂ to NH₃ is 1:2
mass of N₂ reacted is 8.0 g
therefore number of N₂ moles reacted is - 8.0 g / 28 g/mol = 0.286 mol
according to the molar ratio,
1 mol of N₂ will react to give 2 mol of NH₃, assuming nitrogen is the limiting reactant
therefore 0.286 mol of N₂ should give - 2 x 0.286 mol = 0.572 mol of NH₃
therefore mass of NH₃ formed is - 0.572 mol x 17 g/mol = 9.72 g
a mass of 9.72 mol of NH₃ is formed
The correct answer to your question is noble gases are stable <span>due to having the maximum number of valence electrons their outer shell can hold. Meaning their outer shells are stable.
Hope this helps let me know!</span>
I don’t know what to answer
Answer : The work, heat during the process and the change of entropy of the gas are, 0 J, 3333.003 J and -10 J respectively.
Explanation :
(a) At constant volume condition the entropy change of the gas is:

We know that,
The relation between the
for an ideal gas are :

As we are given :



Now we have to calculate the entropy change of the gas.


(b) As we know that, the work done for isochoric (constant volume) is equal to zero. 
(C) Heat during the process will be,

Therefore, the work, heat during the process and the change of entropy of the gas are, 0 J, 3333.003 J and -10 J respectively.
Answer: The value of the equilibrium constant Kc for this reaction is 3.72
Explanation:
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For the given chemical reaction:
The expression for
is written as:
Thus the value of the equilibrium constant Kc for this reaction is 3.72