Answer:
0.375 M
Explanation:
NaOH(aq) + HBr(aq) ------------> NaBr(aq) + H2O(l)
Concetration of acid CA= 0.250M
Concentration of base CB= ????
Volume of acid VA= 30.0mL
Volume of base VB= 20.0mL
Number of moles of acid nA= 1
Number of moles of base nB= 1
CA VA/CB VB= nA/nB
CB= CAVAnB/VB nA
= 0.25× 30×1/20×1= 0.375 M
According to the second order formula:
1/[At] = K t + 1/[Ao]
and when we have the K constant =0.0265 & we have t = 180 min & we have the initial concentration of A = 4.25 so by substitution:
1/[At] = 0.0265 X 180min + 1/4.25
1/[At] = 5
∴[At] = 1/5 = 0.2 m
The scientific study of the origin, history, structure, and composition of the earth.
one mole of sulfuric acid will contain 2 moles of hydrogen atoms. The molar mass of sulfuric acid is 98.0795 g/mol. This means that every mole of sulfuric acid has a mass of 98.0795 g. Since you're dealing with one mole of sulfuric acid, it follows that you will also be dealing with two moles of hydrogen.
Answer:
Option A
Explanation:
Temperature of a body is due to the heat gained or loss. During a phase change, the atoms or molecules of a substance are undergoing change is temperature due to which no temperature change is observed during phase change. The heat in the transition phase is used to break bonds and the change in temperature is felt when kinetic energy change is complete. During transition, the average kinetic energy of the molecules remains unchanged and hence during a phase change a temperature do not changes until unless the phase change is completed.
Hence, option A is correct