They will stay the same through the laws of conservation of mass even when they have changed state so they will have the reactant of Ice will be the same amount as the product of water
There are 1.93 x 10²⁴ particles
<h3>Further explanation</h3>
Given
3.2 moles of Neon gas
Required
Number of particles
Solution
The mole is the number of particles(molecules, atoms, ions) contained in a substance
<em>1 mol = 6.02.10²³ particles
</em>
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
So the number of particles for 3.2 moles :
N = 3.2 x 6.02.10²³
N = 1.93 x 10²⁴
or
we can describe it using Avogadro's number conversion factor

Answer:
150
Explanation:
- C₄H₂OH + 6O2 → 4CO2 + 5H₂O
We can <u>find the equivalent number of O₂ molecules for 100 molecules of CO₂</u> using a <em>conversion factor containing the stoichiometric coefficients of the balanced reaction</em>, as follows:
- 100 molecules CO₂ *
= 150 molecules O₂
150 molecules of O₂ would produce 100 molecules of CO₂.
Answer:
A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.
Explanation:
A simple substitution reaction or simple displacement reaction, called single-displacement reaction, is a reaction in which an element of a compound is substituted by another element involved in the reaction. The starting materials are always pure elements and an aqueous compound. And a new pure aqueous compound and a different pure element are generated as products. The general form of a simple substitution reaction is:
AB + C → A +BC
where C and A are pure elements; C replaces A within compound AB to form a new co, placed CB and elementary A.
So, in a Single replacement reaction an uncombined element replaces an element.
<u><em>A chemical reaction in which an uncombined element replaces an element that is part of a compound is called a simple substitution reaction or simple displacement reaction.</em></u>
The density of the sample is:
Density = mass / volume
Density = 9.85 / 0.675
Density = 14.6 g/cm³
If the sample has 95% gold, and 5% silver, its density should be:
0.95 x 19.3 + 0.05 x 10.5
Theoretical density = 18.9 g/cm³
The difference in theoretical and actual densities is very large, making it likely that the jeweler was not telling the truth.