6.2 grams of CO2 = 1.408786739226764 moles
2C4H10 + 13O2 → 8CO2 + 10H2O Since the equation is balanced, we can set up a proportion: 13 moles of O2 react with 2 moles of C4H10x moles of O2 react with 0.425 moles of C4H10 13 → 2x → 0.425 x = 13 * 0.425 / 2 = 2.7625 <span>2.7625 moles of O2 react with 0.425 moles of C4H10</span>
Answer is: A) Sr (strontium).
The reactivity series<span> is a series of metals from highest to lowest reactivity.</span><span> Metal higher in the reactivity series will displace another.
</span>Strontium is only higher in this group from magnesium. Strontium is stronger reducing agent than magnesium, gives electrons easier.
The answer is
<span>2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g)
Your answer is not yet balanced because you have 3 oxygen atoms. it should be balanced by multiplying both side by 2 such as the balanced equation I made. To check it, I will explain why your answer is not yet balanced.
check: (from your equation)
</span> 1-Pb-1
1-S-1
2 -O-3
the difference between the reactant and the product of Oxygen will prove that it is not yet balanced.
If you use 2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g), to check it:
2-Pb-2
2-S-2
6 -O-6
then this is now balance
Answer:
5.5 moles of given substance.
Explanation:
The given problem can be solved by using the Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Solution:
3.311 ×10²⁵ / 6.022 × 10²³ = moles
5.5 moles of given substance.