Using the given formula, the density of the material is 2.015 g/mL
<h3>Calculating Density </h3>
From the question, we are to determine the density of the material
From the given formula
Density = Mass / Volume
And from the given information,
Mass = 65.5 g
and volume = 32.5 mL
Putting the parameters into the equation,
Density = 65.5/32.5
Density = 2.015 g/mL
Hence, the density of the material is 2.015 g/mL.
Learn more on Calculating density here: brainly.com/question/24772401
#SPJ1
Uranium provides nuclear fuel used generate electricity in nuclear power station,also used by the military to power nuclear submarines and in nuclear weapons.
Answer:
The answer to your question is V2 = 29.6 l
Explanation:
Data
Pressure 1 = P1 = 12 atm
Volume 1 = V1 = 23 l
Temperature 1 = T1 = 200 °K
Pressure 2 = 14 atm
Volume 2 = V2 = =
Temperature 2 = T2 = 300°K
Process
1.- To solve this problem use the Combine gas law.
P1V1/T1 = P2V2/T2
-Solve for V2
V2 = P1V1T2 / T1P2
2.- Substitution
V2 = (12)(23)(300) / (200)(14)
3.- Simplification
V2 = 82800 / 2800
4.- Result
V2 = 29.6 l
Bonds are forces of attractions between atoms formed by the transfer of electrons or sharing of electrons. Metallic bond is a type bond that exist in metallic structures where the atoms of the metals attracts the sea of electrons in the structure.It is these metallic bonds that results to the malleability , ductility and conductivity of metals because in that the sea of electrons makes them conduct electricity. In addition the atoms of metals in the structure are ions which can slide past each other in the sea of electrons.
Given:
0.607 mol of the weak acid
0.609 naa
2.00 liters of solution
The solution for finding the ph of a buffer:
[HA] = 0.607 / 2.00 = 0.3035 M
[A-]= 0.609/ 2.00 = 0.3045 M
pKa = 6.25
pH = 6.25 + log 0.3045/ 0.3035 = 6.25 is the ph buffer prepared.