Answer:

Step-by-step explanation:
From figure,

In triangle 

![\Rightarrow (a+b)^2=(a-b)^2+(O' D)^2\\\Rightarrow a^2+b^2+2ab-a^2-b^2+2ab=(O' D)^2\\\Rightarrow 4ab=(O' D)^2\\\Rightarrow O'D=2\sqrt{ab} \\\Rightarrow O' D=2\sqrt{ab}=AB \quad \quad [\because O' DAB\;\; \text{is a rectangle.}]](https://tex.z-dn.net/?f=%5CRightarrow%20%28a%2Bb%29%5E2%3D%28a-b%29%5E2%2B%28O%27%20D%29%5E2%5C%5C%5CRightarrow%20a%5E2%2Bb%5E2%2B2ab-a%5E2-b%5E2%2B2ab%3D%28O%27%20D%29%5E2%5C%5C%5CRightarrow%204ab%3D%28O%27%20D%29%5E2%5C%5C%5CRightarrow%20O%27D%3D2%5Csqrt%7Bab%7D%20%5C%5C%5CRightarrow%20O%27%20D%3D2%5Csqrt%7Bab%7D%3DAB%20%5Cquad%20%5Cquad%20%5B%5Cbecause%20O%27%20DAB%5C%3B%5C%3B%20%5Ctext%7Bis%20a%20rectangle.%7D%5D)
Hence, 
Answer:
Example: A four-sided shape has two adjacent sides with lengths of 4 meters. You can find the area of this square by multiplying its base times its height: 4 × 4 = 16 square meters. Example: A square's diagonals are both equal to 10 centimeters.
The easiest way to find the vertex is to convert this standard form equation into vertex form, which is y = a(x - h)^2 + k.
Firstly, put x^2 - 10x into parentheses: y = (x^2 - 10x) + 30
Next, we want to make what's inside the parentheses a perfect square. To do that, we need to divide the x coefficient by 2 and square it. In this case, the result is 25. Add 25 inside the parentheses and subtract 25 outside of the parentheses: y = (x^2 - 10x + 25) + 30 - 25
Next, factor what's inside the parentheses and combine like terms outside of the parentheses, and your vertex form is: y = (x - 5)^2 + 5.
Now going back to the formula of the vertex form, y = a(x - h)^2 + k, the vertex is (h,k). Using our vertex equation, we can see that the vertex is (5,5).