Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Answer:
So 1 mole
Explanation:
PV = nRT
P = Pressure atm
V = Volume L
n = Moles
R = 0.08206 L·atm·mol−1·K−1.
T = Temperature K
standard temperature = 273K
standard pressure = 1 atm
22.4 liters of oxygen
Ok so we have
V = 22.4
P = 1 atm
PV = nRT
n = PV/RT
n = 22.4/(0.08206 x 273)
n = 22.4/22.40
n = 1 mole
Answer:
Molecules move freely around since they don't have a definite shape. This is the reason water stays liquid and couldn't be gripped.
The correct answer is letter C. Rock Cycle. Living organisms involved in carbon cycle, oxygen cycle, and in nitrogen cycle. These are involved in the air that living organisms are taking in and out.
Answer: The amount of water formed is 12 moles
Explanation: Please see the attachments below