Answer:
The latent heat of fusion of water is 334.88 Joules per gram of water.
Explanation:
Let the latent heat of ice be 'x' J/g
1) Thus heat absorbed by 100 gram of ice to get converted into water equals

2) heat energy required to raise the temperature of water from 0 to 25 degree Celsius equals

Thus total energy needed equals 
3) Heat energy released by the decrease in the temperature of water from 25 to 11 degree Celsius is

Now by conservation of energy we have

The time for the echo to return is directly proportional to the distance. vw = fλ. In a given medium under fixed conditions, vw is constant, so that there is a relationship between f and λ; the higher the frequency, the smaller the wavelength.
I think in parallel circuits.
Answer:
The size of the force that pushes the wall is 12,250 N.
Explanation:
Given;
mass of the wrecking ball, m = 1500 kg
speed of the wrecking ball, v = 3.5 m/s
distance the ball moved the wall, d = 75 cm = 0.75 m
Apply the principle of work-energy theorem;
Kinetic energy of the wrecking ball = work done by the ball on the wall
¹/₂mv² = F x d
where;
F is the size of the force that pushes the wall
¹/₂mv² = F x d
¹/₂ x 1500 x 3.5² = F x 0.75
9187.5 = 0.75F
F = 9187.5 / 0.75
F = 12,250 N
Therefore, the size of the force that pushes the wall is 12,250 N.
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>