Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm
 
        
             
        
        
        
Answer:
non linear square relationship
Explanation:
formula for centripetal force is given as 
a = mv^2/r 
here a ic centripetal acceleration , m is mass of body moving in circle of radius r and v is velocity of body . If m ,and r are constant we have 
a = constant × v^2
a α v^2 
hence non linear square relationship 
 
        
             
        
        
        
Explanation:
We have,
Mass of a baseball is 0.147 kg
Initial velocity of the baseball is 44.5 m/s 
The ball is moved in the opposite direction with a velocity of 55.5 m/s
It is required to find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Change in momentum, 

Impulse = 14.7 kg-m/s
Therefore, the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat is 14.7 kg-m/s
 
        
             
        
        
        
Answer:
Minimum work = 5060 J
Explanation:
Given:
Mass of the bucket (m) = 20.0 kg
Initial speed of the bucket (u) = 0 m/s
Final speed of the bucket (v) = 4.0 m/s
Displacement of the bucket (h) = 25.0 m
Let 'W' be the work done by the worker in lifting the bucket.
So, we know from work-energy theorem that, work done by a force is equal to the change in the mechanical energy of the system.
Change in mechanical energy is equal to the sum of change in potential energy and kinetic energy. Therefore, 

Therefore, the work done by the worker in lifting the bucket is given as:

Now, plug in the values given and solve for 'W'. This gives,

Therefore, the minimum work that the worker did in lifting the bucket is 5060 J.
 
        
             
        
        
        
Answer: The 1 kg fragment will have three times the speed of the 3kg fragment.
Explanation:Here for the bomb, its chemical energy gets converted into the mechanical energy.
According to the law of conservation of momentum, the two bodies will have equal momentum and to satisfy this condition the lighter mass will have the higher velocity. 
∵ momentum, p = mass × velocity
∴The 1 kg fragment will have three times the speed of the 3kg fragment.