No, momentum is conserved so:
momentum before=momentum after
it is C. 100 kg m/s
Answer:Simple Covalent substance
Explanation:Simple covalent substance describes a substance that has a low melting point and poor electrical conductivity because:
(1)melting point :For the covalent bond and intermolecular force that are present in a simple covalent substance,energy is needed to break the forces of attraction present. In the simple covalent substance, little energy is needed because the intermolecular forces present are broken because they are weaker compared to the covalent bond present.
Therefore, when simple covalent substance melts,only the intermolecular forces are broken leaving only the covalent bond in the substance.
(2) poor conductivity: for a substance to conduct electricity,it must have charged particles which are free to move to and fro.
But in the simple covalent substance,there are no charged particles that can be separated due to the covalent bond present in simple covalent substance.
Answer: 
Explanation:
The kinetic energy of an electron
is given by the following equation:
(1)
Where:

is the momentum of the electron
is the mass of the electron
From (1) we can find
:
(2)
(3)
Now, in order to find the wavelength of the electron
with this given kinetic energy (hence momentum), we will use the De Broglie wavelength equation:
(4)
Where:
is the Planck constant
So, we will use the value of
found in (3) for equation (4):
(5)
We are told the wavelength of the photon
is the same as the wavelength of the electron:
(6)
Therefore we will use this wavelength to find the energy of the photon
using the following equation:
(7)
Where
is the spped of light in vacuum
Finally:
Answer:
Energy lost due to friction is 22 J
Explanation:
Mass of the ball m = 4 kg
Initially velocity of ball v = 6 m/sec
So kinetic energy of the ball 

Now due to friction velocity decreases to 5 m/sec
Kinetic energy become

Therefore energy lost due to friction = 72 -50 = 22 J
Answer:
57 N
Explanation:
Were are told that the force
of gravity on Tomas is 57 N.
And it acts at an inclined angle of 65°
Thus;
The vertical component of the velocity is; F_y = 57 sin 65
While the horizontal component is;
F_x = 57 cos 65
Thus;
F_y = 51.66 N
F_x = 24.09 N
The net force will be;
F_net = √((F_y)² + (F_x)²)
F_net = √(51.66² + 24.09²)
F_net = √3249.0837
F_net = 57 N