Early hypotheses were not based on observations.
Early hypotheses were not tested by experimentation.
Early hypotheses were formed from scientific questions.
Early hypotheses were influenced by creative thinking
Answer:
70.6 mph
Explanation:
Car A mass= 1515 lb
Car B mass=1125 lb
Speed of car B is 46 miles/h
Distance before locking, d=19.5 ft
Coefficient of kinetic friction is 0.75
Initial momentum of car B=mv where m is mass and v is velocity in ft/s
46 mph*1.46667=67.4666668 ft/s
Initial momentum of car A is given by
where
is velocity of A
Taking East as positive and west as negative then the sum of initial momentum is
The common velocity is represented as
hence after collision, the final momentum is
From the law of conservation of linear momentum, sum of initial and final momentum equals each other hence
The acceleration of two cars
From kinematic equation
hence
Substituting the value of
in equation
Answer:
Because electromagnetic waves can travel through empty space
Explanation:
The energy that is emitted from the sun is transferred to the earth in the form of radioactive waves. These waves are originated due to the vibration between the electric and magnetic fields. As this energy reaches the earth, it warms the earth's atmosphere, resulting in the transfer of heat energy in three possible ways namely the conduction, convection, and radiation.
This electromagnetic waves do not require any matter for the transmission of energy, and can easily travel in empty space from the core of the sun to the earth and other nearby planets. Whereas other types of waves cannot travel in space, so it is transferred in the form of electromagnetic waves only.
If the vertical component is 29.6 m/s down, and the horizontal component
is 54.8 m/s parallel to the surface, then the magnitude of the slanty vector is
√(29.6² + 54.8²) = √(876.16 + 3003.04) = √3879.2 = 62.28 m/s .
That's 139 mph ! Wow !