Answer:
nine
nine is the atomic number of fluorine
Answer:
reviewing the opinion of the two students we see that neither is right, since when the kinetic energy increases the potential energy decreases by the same value
Explanation:
For this exercise we must use the law of conservation of energy.
Starting point. Resting electron
Em₀ = U = eV
the potential difference and the electric field are related
V = - E d
Final point. When leaving the electric field
= K = ½ m v²
Em₀ = Em_{f}
e E d = ½ m v²
From this expression we see that when an electron moves from the initial point to the final point, the potential energy must decrease, for the total energy to be constant.
When reviewing the opinion of the two students we see that neither is right, since when the kinetic energy increases the potential energy decreases by the same value
There is a net force of 15N in The direction of Levi
Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours
Answer:
B
Explanation: Because conduction is when an object touches another object and convection happens with boiling water or the water cycle, the particles/water fall and rise.