'll use the binomial approach. We need to calculate the probabilities that 9, 10 or 11
<span>people have brown eyes. The probability that any one person has brown eyes is 0.8, </span>
<span>so the probability that they don't is 1 - 0.8 = 0.2. So the appropriate binomial terms are </span>
<span>(11 C 9)(0.8)^9*(0.2)^2 + (11 C 10)(0.8)^10*(0.2)^1 + (11 C 11)(0.8)^11*(0.2)^0 = </span>
<span>0.2953 + 0.2362 + 0.0859 = 0.6174, or about 61.7 %. Since this is over 50%, it </span>
<span>is more likely than not that 9 of 11 randomly chosen people have brown eyes, at </span>
<span>least in this region. </span>
<span>Note that (n C r) = n!/((n-r)!*r!). So (11 C 9) = 55, (11 C 10) = 11 and (11 C 0) = 1.</span>
D. is your answer
4/x^2
hope it helps
Answer:
it is not possible because you only know 1 side. Unless you use cos sin
Step-by-step explanation:
An = a1 + (n - 1)(d)
Where a1 is the first term and d is the common difference.
First find d, the common difference.
24, ____, 32
a3 a4 a5
Subtract 32-24 = 8
Subtract a5 - a3 = 2
Divide 8/2 = 4
d = 4
Use d and one of the values they give us to find a1.
a3 = 24
24 = a1 + (3 - 1)(4)
24 = a1 + 2(4)
24 = a1 + 8
Subtract 8 from both sides
16 = a1
an = 16 + (n - 1)(4)
Can also be written
an = 16 + 4n - 4
an = 4n + 12