They are kind of opposite processes. Chemical synthesis is execution of chemical reactions to make products. Like you take two substances, you put them together, they react and you have new a substance. For example.

here Sodium and Chlorine react to make a new substance which is Sodium Chloride.
Chemical decomposition is process of seperating a substance to different substances. There is a substance by a reaction this substance becomes two substances, Like : XY -> X+Y For example :
<h3>
Answer:</h3>
1.69 g Mg₃N₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] Mg + N₂ → Mg₃N₂
[RxN - Balanced] 3Mg + N₂ → Mg₃N₂
[Given] 1.22 g Mg
[Solve] grams Mg₃N₂
<u>Step 2: Identify Conversions</u>
[RxN] 3 mol Mg → Mg₃N₂
[PT] Molar Mass of Mg - 24.31 g/mol
[PT] Molar Mass of N - 14.01 g/mol
Molar Mass of Mg₃N₂ - 3(24.31) + 2(14.01) = 100.95 g/mol
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.68873 g Mg₃N₂ ≈ 1.69 g Mg₃N₂
Answer:
O
Explanation:
The atoms lose energy during a change of state, but can still slide past each other; gas to a liquid.
Answer:
When the electron changes levels, it decreases energy and the atom emits photons. The photon is emitted with the electron moving from a higher energy level to a lower energy level. The energy of the photon is the exact energy that is lost by the electron moving to its lower energy level.
Explanation:
I will assume that the sign ? between the C and the CCH3 is a triple bond, and I will represent it by three vertical lines |||
So the reaction is:
<span>CH3CH2CH2CH2C ||| CCH3+2Br2 ---->
This is a typical reaction known as halogenation of alkines.
This is an addition reaction, i.e. the alkyne undergoes an addition of the Br2 (and it also happens with Cl2) to the triple bond to form a tetra halide.
.
Br Br
</span> | |
<span><span>CH3CH2CH2CH2C ||| CCH3+2Br2 ----> CH3 CH2 CH2 CH2 C - C</span> - CH3
| |
Br Br
</span>