Let's identify first the phases of matter inside each of those beakers. The first beaker on the left has a compact shape and has its own volume. So, that must be solid. The middle beaker has a compact shape but it takes the shape of its container. So, that must be liquid. The third beaker on the right is gas because the molecules are far away from each other.
After identifying each states, let's investigate the energy for phase change. Let's start with the arrows pointing to the right. The first arrow to the right is a phase change from solid to liquid. The intermolecular forces in a solid is the strongest among the three phases of matter. So, you would need an input of energy to break them apart into liquid. The same is true for the phase change from liquid to gas. Therefore, all the arrows pointing to the right require an input of energy.
The reverse arrows pointing to the left needs to release energy. The molecules in the gas state are free such that they can travel from one point to another easily. They have the highest amount of energy. So, if you want the molecules to come closer together, you need to remove the energy to keep them in place. Therefore, the arrows pointing to the right require removal of energy.
Answer:
it is (a) USDA certification
Explanation:
apex
Living organisms use atoms from sugar molecules combined with other elements to form lipids and nucleic acids. Lipids are hydrophobic organic compounds composed of carbon and a high ratio of hydrogen to oxygen. Nucleic acids are an acidic polymer of nucleotides found or produced in the cell nucleus.
Answer: When a substance is pure, it is composed of one type of molecule. For example, table salt is only composed of (more or less) salt molecules, while seawater has water and salt molecules. A more complicated example of a non - pure substance is soil. It has many different types of nutrients and compounds.
Answer:
B: +3
Explanation:
If Gallium loses 3 electrons, it will become an ion.
The ion will be positively charged because in this new ion, the number of electrons is lesser than the number of protons. The charge difference will impart a positive net charge on the ion.
- In a neutral atom, the number of electrons and protons are the same.
- For positively charged ions, the number of protons is greater than the electrons
If Gallium the loss of 3 electrons offsets the charge balance in the chemical specie. Thus, the ion will have a net +3 charge.