Resonance, leaving group, carbonyl carbon delta+, and steric effect is the most crucial variables that affect the relative reactivity of a functional group containing a carbonyl in an addition or substitution process.
Discussion:
1. Carbonyl Carbon Delta+: The carbonyl group becomes more electrophilic and accelerates nucleophilic assault when the carbonyl carbon delta+ is bigger.
2. Resonance: When the carbonyl is transformed into the tetrahedral adduct, it may be lost. Loss of resonance increases the energy of the transition state for this nucleophilic assault because resonance has the function of stabilizing. Therefore, a carbonyl functional group's resistance to nucleophilic attack increases as resonance in the group increases in importance.
3. Leaving group: Tetrahedral adduct fragmentation is encouraged by a better LG.
4. Steric effects: The nucleophilic attack on carbonyl carbon is delayed when sterically impeded.
Learn more about carbonyl here:
brainly.com/question/21440134
#SPJ4
<span>Elements are matter made of one kind of atom.</span>
Answer:
a. fluorine
Explanation:
Fluorine is the element of group 17 and period 2. The electronic configuration of the element is
.
Stable oxidation state = -1 of fluorine as it gains one electron to gain noble gas configuration.
With alkali metals, which have oxidation state of +1 form ionic compound of the form, MX where X is F.
Among the halogens, fluorine forms the most stable halide because of the comparable size of the hydrogen and fluorine. Thus, it is the weakest acid when compared with other hydrogen halides.
Fluorine is the most reactive in the halogen series and thus, combines with most of the elements.
Fluorine forms inter-halogen compounds of form XA only. Example - ClF.
Hence, option a is correct.
The reaction is a hydrogenation reaction of an alkene, and its equation is:
C₂H₄(g) + H₂(g) → C₂H₆(g)
Therefore, this reaction can be sped up just as any other irreversible reaction may have its rate increased, by increasing temperature and pressure to increase the effective collisions of molecules.