You did not provide possible answers, but one possible might be that the current atomic theory is so sound and plausible that there should not be anything that could change it in the near future.
Answer:
The difference in mass between 3.01×10^24 atoms of gold and a gold bar with the dimensions 6.00 cm X 4.25 cm X 2.00 cm is :
<u>Difference</u> <u>in mass</u> =<u> 985.32 - 984.5 = 0.82 g</u>
Explanation:
<u>Part I :</u>

n = 4.9983
n = 4.99 moles
(Note : You can also take n = 5 mole )
Molar mass of gold = 196.96 g/mole
This means, 1 mole of gold(Au) contain = 196.96 grams
So, 4.99 moles of gold contain =
g
4.99 moles of gold contain = 984.8 g
Mass of
atoms of gold = 984.5 g
<u>Part II :</u>
Density of Gold = 
Volume of the cuboid = 
Volume of the gold bar =
Volume of the gold bar = 51
Using formula,

Mass = 985.32 g
So, A gold bar with the dimensions 6.00 cm X 4.25 cm X 2.00 cm has mass of <u>985.32 g</u>
<u>Difference</u> <u>in mass</u> =<u> 985.32 - 984.5 = 0.82 g</u>
Answer:
A
Explanation:
The answer A is the best answer because it contains the most general characteristic of a chemical change.
The answer to the question is D.
Answer:
Water has a molar mass of 18.015 g/mol . This means that one mole of water molecules has a mass of 18.015 g . So, to sum this up, 6.022⋅1023 molecules of water will amount to 1 mole of water, which in turn will have a mass of 18.015 g . 2.7144moles H2O ⋅6.022⋅1023molec.
Explanation: