The new volume of the dilute solution is 0.33 L.
<u>Explanation:</u>
Using the law of Volumetric analysis, we can find the volume of the dilute solution from the stock solution or the concentrated solution of Calcium Chloride.
V1M1 = V2M2
V1 be the volume of the stock solution = 0.25 L
M1 being the molarity of the stock solution = 0.98 M
V2 be the volume of the dilute solution = ?
M2 being the molarity of the dilute solution = 0.74 M
We have to rearrange the above equation to find V2 as,
V2 = 
Now plugin the values as,
V2 = 
= 0.33 L
So the new volume of the dilute solution is 0.33 L.
Answer:

Explanation:
Hello,
In this case, the dissociation reaction is:

For which the equilibrium expression is:
![Ksp=[Pb^{2+}][I^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5BI%5E-%5D%5E2)
Thus, since the saturated solution is 0.064g/100 mL at 20 °C we need to compute the molar solubility by using its molar mass (461.2 g/mol)

In such a way, since the mole ratio between lead (II) iodide to lead (II) and iodide ions is 1:1 and 1:2 respectively, the concentration of each ion turns out:
![[Pb^{2+}]=1.39x10^{-3}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D1.39x10%5E%7B-3%7DM)
![[I^-]=1.39x10^{-3}M*2=2.78x10^{-3}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.39x10%5E%7B-3%7DM%2A2%3D2.78x10%5E%7B-3%7DM)
Thereby, the solubility product results:

Regards.
You cannot create something from nothing and similarly you cannot create less from more, if you didn't balance an equation that needs to be balanced, your product might end up equalling more or less than the total mass of the two elements combined. Which is impossible
Answer:
Potassium
Explanation:
From the given riddle. Potassium is the right answer. This because on the periodic table, potassium has the smallest atomic number of any element in its period with the electronic configuration 1s2 2s2 2p6 3s2 3p6 4s1, it has the largest atomic radius within its group because the radius has no d-electron shell filled. Potassium is a soft metal but contains high reactivity.