Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
James E. Hansen studied climate change
C) A current is induced in the coiled wire, which lights the light bulb
The moving magnetic field creates electricity which lights the light bulb
Hope it helps!
Answer:
the rate of change in volume with time is 280πr² cm³/min
Explanation:
Data provided in the question:
Radius of the sphere as 'r'
= 70 cm/min
Volume of the sphere, V =
Surface area of the sphere as 4πr²
Now,
Rate of change in volume with time,
=
=
Substituting the value of 
=
= 280πr² cm³/min
Hence, the rate of change in volume with time is 280πr² cm³/min
The 3rd one. The question can be tested by a systematic procedure