1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
2 years ago
10

A light with a second-order bright band forms a diffraction angle of 30. 0°. The diffraction grating has 250. 0 lines per mm. Wh

at is the wavelength of the light? 800 nm 1,000 nm 1,386 nm 1,732 nm.
Physics
2 answers:
Luden [163]2 years ago
8 0

The distance between two successive troughs or crests is known as the wavelength. The wavelength of the light will be 1000 nm.

How do you define wavelength?

The distance between two successive troughs or crests is known as the wavelength. The peak of the wave is the highest point, while the trough is the lowest.

The wavelength is also defined as the distance between two locations in a wave that have the same oscillation phase.

Diffraction angle= 30⁰

Diffraction grating per mm= 250

wavelength = ?

Mathematically the equation of bright band is given by

\rm \lambda= \frac{sin\theta}{nN}

\rm \lambda= \frac{sin23^0}{250\times 2}

\rm \lambda= 0.000001 m

\rm \lambda= 1000 nm

Hence the wavelength of the light will be 1000 nm.

To learn more about the wavelength refer to the link;

brainly.com/question/7143261

sveta [45]2 years ago
7 0

Answer:

1,732

Explanation:

You might be interested in
Calculate the wavelengths of the first five members of the Lyman series of spectral lines, providing the result in units Angstro
Oduvanchick [21]

Answer:

Explanation:

The formula for hydrogen atomic  spectrum is as follows

energy of photon due to transition from higher orbit n₂ to n₁

E=13.6 (\frac{1}{n_1^2 } - \frac{1}{n_2^2})eV

For layman series n₁ = 1 and n₂ = 2 , 3 , 4 ,   ...   etc

energy of first line

E_1=13.6 (\frac{1}{1^2 } - \frac{1}{2 ^2})

10.2 eV

wavelength of photon = 12375 / 10.2 = 1213.2 A

energy of 2 nd line

E_2=13.6 (\frac{1}{1^2 } - \frac{1}{3 ^2})

= 12.08 eV

wavelength of photon = 12375 / 12.08 = 1024.4 A

energy of third line

E_3=13.6 (\frac{1}{1^2 } - \frac{1}{4 ^2})

12.75 e V

wavelength of photon = 12375 / 12.75 = 970.6 A

energy of fourth line

E_4=13.6 (\frac{1}{1^2 } - \frac{1}{5 ^2})

= 13.056 eV

wavelength of photon = 12375 / 13.05 = 948.3 A

energy of fifth line

E_5=13.6 (\frac{1}{1^2 } - \frac{1}{6 ^2})

13.22 eV

wavelength of photon = 12375 / 13.22 = 936.1 A

7 0
3 years ago
A 78.5-kg man is standing on a frictionless ice surface when he throws a 2.40-kg book horizontally at a speed of 11.3 m/s. With
kirill [66]

Answer:

The man moves across the ice with a speed of 0.345m/s.

Explanation:

From the conservation of linear momentum, we have that the total linear momentum before the book throw is equal to the total linear momentum just after it. Since the initial velocity of the system is zero (so the initial momentum is zero), we have that:

m_mv_m+m_bv_b=0\\\\v_m=-\frac{m_b}{m_m} v_b

Where m_m is the mass of the man, m_b is the mass of the book, and v_m and v_b are their velocities. Plugging in the given values, we can compute the speed of the man (ignoring the negative sign, because we care about the magnitude, not the direction):

v_m=\frac{2.40kg}{78.5kg}(11.3m/s)=0.345m/s

In words, the resulting speed of the man is 0.345m/s.

8 0
3 years ago
Read 2 more answers
A cork shoots out of a champagne bottle at an angle of 40.0 above the horizontal. If the cork travels a horizontal distance of 1
ruslelena [56]

Answer:

The initial speed of the cork was 1.57 m/s.

Explanation:

Hi there!

The equation of the horizontal position of the cork in function of time is the following:

x = x0 + v0 · t · cos θ

Where:

x = horizontal position at time t.

x0 = initial horizontal position.

v0 = initial speed of the cork.

t = time.

θ = launching angle.

If we place the origin of the frame of reference at the launching point, then x0 = 0.

We know that at t = 1.25 s, x = 1.50 m. We also know the launching angle so we can solve the equation of horizontal position for the initial speed, v0:

x = v0 · t · cos θ

x / t · cos θ = v0

v0 = 1.50 m / (1.25 s · cos (40.0°)

v0 = 1.57 m/s

The initial speed of the cork was 1.57 m/s.

4 0
3 years ago
Read 2 more answers
Student bikes to school by traveling first dN = 1.10 miles north, then dW = 0.300 miles west, and finally dS = 0.200 miles south
melisa1 [442]
Taking the vertical component of the displacement
1.1 - 0.2 = 0.9 mile
The horizontal component of the displacement
-0.3 mile

The magnitude of the displacement is
√[ (0.9)² + (-0.3) ] = 0.95 mile

The direction is
θ = tan-1 (-0.3/0.9)
θ = 161.57 degrees.
8 0
3 years ago
A 7750 kg space probe, moving nose-first toward Jupiter at 179 m/s relative to the Sun, fires its rocket engine, ejecting 72.0 k
Reika [66]

Answer:

179.47m/s

Explanation:

Using the law of conservation of momentum

m1u1 + m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and u2 are the initial velocities

v is the final velocity

Substitute

7750(179)+72(230) = (7750+72)v

1,387,250+16560 = 7822v

1,403,810 = 7822v

v = 1,403,810/7822

v= 179.47m/s

Hence the final velocity of the probe is 179.47m/s

7 0
3 years ago
Other questions:
  • Why is it important to consider experimental error in all the empirical results presented?
    8·1 answer
  • 4 The temperature at the center of the sun is 1.55 x 10' K. Express this in degrees
    8·1 answer
  • In outer space a five KG object moving in to the right at 4M/S and a two KG object moving to the left at 3MS collide and stick t
    13·1 answer
  • Answer the following three questions in complete sentences. 1. How much does the earth weigh? 2. How far away is the sun? 3. Wha
    13·2 answers
  • A car traveling at 37m/s starts to decelerate steadily. It comes to a complete stop in 15 seconds. What is it’s acceleration
    15·1 answer
  • A woman at an airport is towing her 20.0-kg suitcase at constant speed by pulling on a strap at an angle θ above the horizontal.
    10·1 answer
  • Explain the mode of operation of x-ray​
    13·2 answers
  • Why does compound pendulum have the identity of possessing two values of h corresponding to the same period of oscillation
    11·1 answer
  • A 23.0 kg child is riding a playground merry-go-round that is rotating at 30.0 rpm. What centripetal force, in N, must she exert
    6·1 answer
  • What is the net force 100n to the left 100 n to the right
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!