For a curved mirror, all points have the same normal and the angle of incidence is also equal to the angle of reflection.
According to the laws of reflection, the incident ray, reflected ray and normal all lie on the same plane. For a curved mirror, the normal remains the same at all points along the curved mirror.
Again, the angle made between the incident ray and the normal is the same as the angle made between the reflected ray and the normal. Therefore, the angle of reflection is equal to the angle of incidence.
Learn more: brainly.com/question/17638582
Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.
Answer:2.47
Explanation: did the math
The power in horsepower is 40.1 hp
Explanation:
We start by calculating the work done by the airplane during the climb, which is equal to its change in gravitational potential energy:

where
mg = 11,000 N is the weight of the airplane
is the change in height
Substituting,

Now we can calculate the power delivered, which is given by

where
is the work done
is the time taken
Substituting,

Finally, we can convert the power into horsepower (hp), keeping in mind that

Therefore,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
<span> y=y0 + vt +1/2gt^2
(solve for t here) cause you know y,y0,v,g
you will do quad formula here
then:
v=v0 +at solve for v
(remember the direction of the ball too (signs))
The main thing to remember here is that when the ball passes exactly (height) where it was launched it will travel the speed at which it was launched. *its almost like the ball was thrown in the downward direction. </span>