Answer:
B is the answers for the question
Answer:
Elastically
Explanation:
A rock that has deformed Elastically under stress keeps its new shape when the stress is released.
In elastic deformation the original shape of the object is regained when the stress is removed. Whereas in plastic deformation the original shape is parmanently deformed with the application of stress.
(1.9 yr) x (365.24 day/yr) x (86,400 sec/day) x (10⁹ nsec/sec)
= (1.9 x 365.24 x 86,400 x 10⁹) nanosec
= 6.00 x 10¹⁶ nanoseconds
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
Q1. Option 2: basketball
Q2: Newton's first law is <span>the </span>law<span> of inertia. </span>An object at rest stays at rest and an object in motion stays in motion.
<span>
</span>
<span>Q3. A basketball sitting on the floor stays there and a basketball rolling on court keeps on rolling.</span>
<span>
</span>
<span>Q4 Second law says acceleration is dependent upon net force and mass of the object.</span>
Q5. Basketball accelerates when a player tries to dunk it with both hands.
<span>Q6. Third law says f<span>or every action, there is an equal and opposite reaction.</span></span>
<span><span>
</span></span>
<span><span>Q7. As a player dribbles, the force the basketball hits the floor with is the same as the force from the floor on the ball. That is why the ball bounces back up in air.</span></span>
<span><span>
</span></span>