<span>This problem can be solved by the formula used to find resistance. The formula is R=V/I which basically means divide the Voltage by the Current to find the Resistance in an object. Ohm's law.</span>
Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
The normal stress follows the formula written below:
σ = F/A
There are two types of stress, axial and tangential. Since we are only given with the dimension of the radius (and not the length), the possible stress is axial. So, the area is,
A = πr² = π(0.75 in)² = 1.767 in²
So,
σ = F/A = 500 lb/1.767 in² = <em>282.94 psi</em>
Answer:
High boiling and melting points: Hydrogen bonds increase the amount of energy required for phase changes to occur, thereby raising the boiling and melting points.
High specific heat: Hydrogen bonds increase the amount of energy required for molecules to increase in speed, thereby raising the specific heat.
Lower density as a solid than as a liquid: Hydrogen bonds increase the volume of the solid by holding molecules apart, thereby decreasing the density
High surface tension: Hydrogen bonds produce strong intermolecular attractions, which increase surface tension
Explanation:
Answer:
width of slit(a)≅ 0.1mm
Explanation:
Wave length of laser pointer =λ = 685 nm
Distance between screen and slit = L = 5.5 m
Width of bright band = W=8.0cm=0.08m
width of slit=a
recall the formula;
W=(2λL)/a
a=2λL/W
a=(2 *685*10⁻⁹*5.5m)/0.08m
a=7535*10⁻⁹/0.08
a=94187.5 *10⁻⁹
a=0.0000941875m
a=0.0941875mm
a≅0.1mm