The first ariplanr was made December 17, 1903
Answer:
a) 360 kQ
b) 4.32 MJ
c) 1200 W-h
Explanation:
a) The definition of the current is.

having a count that 10 hours = 36.000 s

![Q = 36000*10 = 360.000 [Q]](https://tex.z-dn.net/?f=%20Q%20%3D%2036000%2A10%20%3D%20360.000%20%5BQ%5D%20)
b) The definition of the Energy in power terms is.

and the definition of power is:
![P = V*I = 12 * 10 = 120 [W]](https://tex.z-dn.net/?f=%20P%20%3D%20V%2AI%20%3D%2012%20%2A%2010%20%3D%20120%20%5BW%5D)
replacing in the energy formula.

solving the integral, have into account that t is in seconds.
![E=P*t=120*36000=4.320.000=4.32 [MJ]](https://tex.z-dn.net/?f=%20E%3DP%2At%3D120%2A36000%3D4.320.000%3D4.32%20%5BMJ%5D)
c) The energy in W-h, we can find it multiplying power by hours
.
To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.
By definition we know that the change in entropy is given by

Where,
Q = Heat transfer
T = Temperature
On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

According to the data given we have to,




PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is



On the other hand,



The total change of entropy would be,



Since
the heat engine is not reversible.
PART B)
Work done by heat engine is given by



Therefore the work in the system is 100000Btu
Answer: A) <u>Either source or listener must be moving.</u>
Explanation:
Frequencies can shift if an observer is moving relative to the wave’s source. This type of shift is called the Doppler effect (often used to analyze sounds). Think about the sound you hear when a police siren passes you and drives away; as the car increases its distance from you, the pitch of its sound becomes lower. This is because each wave is emitted from a greater distance, causing the wavelength to spread out or increase relative to you, the listener.
Answer: 9.8N
Explanation: The velocity of a sound wave (v), tension on the string (T) and mass per unit length (u) are all related by the formulae below
T = v² * u
Where T is tension in Newton (N), v is velocity of sound waves in meter per seconds (m/s) and u is mass per unit length in kilogram per meter (kg/m)
u = mass of chord / length of chord
u = 0.44/ 8.1
u = 0.1 kg/m
Velocity of sound waves (v) =length of chord / time taken for wave to travel
v = 8.1 / 0.82 = 9.9m/s
Tension is calculated below using the formula
T = v² * u
T = (9.9)² x 0.1
T= 9.8N