Producers (autotroph)
I’m sorry if this isn’t the answer you were looking for, if so, please be more specific and I can try to help again, thank you.
Answer:
The answer to your question is given below.
Explanation:
Potassium (K) has 19 electrons with electronic configuration of 2, 8, 8, 1.
Fluorine (F) has 9 electrons with electronic configuration of 2, 7.
Fluorine needs 1 electron to complete it's octet configuration.
Hence, potassium (K), will lose 1 electron to fluorine (F) to form potassium ion (K+) with electronic configuration of 2, 8, 8. The fluorine atom (F) will receive the 1 electron from potassium to form the fluoride ion (F-) with electronic configuration of 2, 8.
**** Please see attached photo for further details.
Complete one rotation.
Hope this helps.
Answer:
[OH-] = 3.0 x 10^-19 M
Explanation:
[H3O+][OH-] = Kw
Kw = 1.0 x 10^-14
[H3O+][OH-] = 1.0 x 10^-14
[OH-] = 1.0 x 10^-14 / 3.3 x 10^4 = 3.0 x 10^-19
Answer:
142.82 g
Explanation:
The following data were obtained from the question:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Density of gol= 19.3 g/cm³
Mass of gold =.?
Next, we shall determine the volume of the gold. This can be obtained as follow:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Volume of gold =.?
Volume of gold = (Volume of water + gold) – (Volume of water)
Volume of gold = 19.4 – 12
Volume of gold = 7.4 mL
Finally, we shall determine the mass of the gold as follow:
Note: 1 mL is equivalent to 1 cm³
Volume of gold = 7.4 mL
Density of gol= 19.3 g/cm³ = 19.3 g/mL
Mass of gold =?
Density = mass /volume
19.3 = mass of gold /7.4
Cross multiply
Mass of gold = 19.3 × 7.4
Mass of gold = 142.82 g
Therefore, the mass of the gold pebble is 142.82 g