Answer:
FeCl2 + H. 2
Explanation:
Iron react with hydrogen chloride to produce iron(II) chloride and hydrogen.
Answer:
The new volume is 2415 mL
Explanation:
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C are used and are reference values for gases.
Boyle's law says that the volume occupied by a given gas mass at constant temperature is inversely proportional to the pressure and is expressed mathematically as:
P * V = k
Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the gas pressure increases. And when the temperature is decreased, the gas pressure decreases. This can be expressed mathematically in the following way:

Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Having two different states, an initial state and an final state, it is true:

In this case:
- P1= 0.9 atm
- V1=4,600 mL= 4.6 L (being 1 L=1,000 mL)
- T1= 195 °C= 468 °K (being 0°C=273°K)
The final state 2 is in STP conditions:
- P2= 1 atm
- V2= ?
- T2= 0°C= 273 °K
Replacing:

Solving:

V2= 2.415 L =2,415 mL
<u><em>The new volume is 2415 mL</em></u>
Answer:) is related to the change in free energy of the reaction--d
Explanation:
For any reaction that is taking place at any moment the change in Gibbs Free Energy is related to the reaction quotient as
ΔG=ΔG⁰+RTlnQ
where R-Universal Gas Constant, T- Temperature in Kelvin, Q is the reaction quotient
Now when the system is in equilibrum, ΔG⁰ which is the standard Gibb's Free Energy,is then defined as
ΔG⁰=−RTlnK ,
where K is the equilibrium constant. because ΔG becomes 0 and reaction quotient Q = K
The equilibrum constant is related to the change in free energy of the reaction.
because when ΔG is negative, the value of K is high which leads to a spontaneous. reaction
when ΔG is positive, the value of K is low, which leads to a spontaneous. reaction in the opposite direction.
Answer:
7.12 × 10⁻³ M/s
Explanation:
Step 1: Write the balanced reaction
2 SO₂ + O₂ ⇒ 2 SO₃
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to SO₃ is 1:2.
Step 3: Calculate the rate of formation of SO₃
The rate of loss of O₂ is 3.56 × 10⁻³ mol O₂/L.s. The rate of formation of SO₃ is:
3.56 × 10⁻³ mol O₂/L.s. × 2 mol SO₃/1 mol O₂ = 7.12 × 10⁻³ mol SO₃/L.s