Answer:
c is the speed of light
Explanation:
E: energy
m: mass
c2: speed of light squared
HNO₃ + H₂S → S + NO + H₂<span>O
Assign Oxidation Number:
L.H.S R.H.S
N in HNO</span>₃ = +5 +2 = N in NO
S in H₂S = -2 0 = S in S
Write Half cell Reactions:
Reduction Reaction:
3e⁻ + HNO₃ → NO -------(1)
Oxidation Reaction:
H₂S → S + 2e⁻ -------(2)
Multiply eq. 1 with 2 and eq. 2 with 3 to balance electrons.
6e⁻ + 2 HNO₃ → 2 NO
3 H₂S → 3 S + 6e⁻
Cancel e⁻s,
______________________________
2 HNO₃ + 3 H₂S → 2 NO + 3 S + H₂O
Balance Oxygen Atoms by multiplying H₂O with 4, Hydrogen atoms will automatically get balance.
2 HNO₃ + 3 H₂S → 2 NO + 3 S + 4H₂O
<u>Answer:</u> The spacing between the crystal planes is 
<u>Explanation:</u>
To calculate the spacing between the crystal planes, we use the equation given by Bragg, which is:

where,
n = order of diffraction = 2
= wavelength of the light =
(Conversion factor:
)
d = spacing between the crystal planes = ?
= angle of diffraction = 22.20°
Putting values in above equation, we get:

Hence, the spacing between the crystal planes is 
Answer:
Option D is correct = 8.12 grams of NaCl
Explanation:
Given data:
Moles of sodium chloride = 0.14 mol
Mass of sodium chloride = ?
Solution:
Formula:
Number of moles = mass of NaCl / Molar mass of NaCl
Molar mass of NaCl = 58 g/mol
Now we will put the values in formula.
0.14 mol = Mass of NaCl / 58 g/mol
Mass of NaCl = 0.14 mol × 58 g/mol
Mass of NaCl = 8.12 g of NaCl
Thus, 0.14 moles of NaCl contain 8.12 g of NaCl.
Answer:
The correct answer is entropy change of the surrounding plus the entropy change of the system must be positive.
Explanation:
The term entropy is a state function.Entropy can be defined as the disorder or randomness of the molecules in a system.
A spontaneous reaction is a type of reaction which deals with the release of free energy.The change of free energy in case of spontaneous reaction is always negative.
According to the second law of thermodynamics a spontaneous reaction will occur in a system if the total entropy of both system and surrounding increases during the reaction.