Answer:
The change in the Gibbs function of reaction on going from crust to core, dG=291442.4 J/mol
Explanation:
dG=vdp-sdT
Where T is the temperature .
P is the pressure.
S is entropy
V= 1cm3 =10-6 m3
P= 3*10∧6 atm = 3*10∧11 pa
The temperature at the center of the earth, Tc = 4*103 °C. : The temperature at the sufrace (crust) of the earth, Ts =298K.
Subistuting the values
dG = (10-6 *(3*1011-105) - (2.1(4373-298))
dG=291442.4 J/mol.
Answer:
solve example number 2 ....
Explanation:
solve examole number 2 .....
The given complex ion is as follow,
[Ru (CN) (CO)₄]⁻
Where;
[ ] = Coordination Sphere
Ru = Central Metal Atom = <span>Ruthenium
CN = Cyanide Ligand
CO = Carbonyl Ligand
The charge on Ru is calculated as follow,
Ru + (CN) + (CO)</span>₄ = -1
Where;
-1 = overall charge on sphere
0 = Charge on neutral CO
-1 = Charge on CN
So, Putting values,
Ru + (-1) + (0)₄ = -1
Ru - 1 + 0 = -1
Ru - 1 = -1
Ru = -1 + 1
Ru = 0
Result:
<span>Oxidation state of the metal species in each complex [Ru(CN)(CO)</span>₄]⁻ is zero.
Answer:
The solution would need 13.9 g of KCl
Explanation:
0.75 m, means molal concentration
0.75 moles in 1 kg of solvent.
Let's think as an aqueous solution.
250 mL = 250 g, cause water density (1g/mL)
1000 g have 0.75 moles of solute
250 g will have (0.75 . 250)/1000 = 0.1875 moles of KCl
Let's convert that moles in mass (mol . molar mass)
0.1875 m . 74.55 g/m = 13.9 g